Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis.

نویسندگان

  • Atsushi Takabayashi
  • Masahiro Kishine
  • Kozi Asada
  • Tsuyoshi Endo
  • Fumihiko Sato
چکیده

Whereas linear electron flow (LEF) in photosynthesis produces both ATP and NADPH, the cyclic electron flow (CEF) around photosystem I has been shown to produce only ATP. Two alternative routes have been shown for CEF; NAD(P)H dehydrogenase (NDH)- and ferredoxin:plastoquinone oxidoreductase (FQR)-dependent flows, but their physiological relevance has not been elucidated in detail. Meanwhile, because C(4) photosynthesis requires more ATP than does C(3) photosynthesis to concentrate CO(2), it has not been clear how the extra ATP is produced. In this study, to elucidate whether CEF contributes to the additional ATP needed in C(4) photosynthesis, we estimated the amounts of PGR5, which participates in FQR-dependent flow, and NDH-H, a subunit of NDH, in four C(4) species. Although the expression profiles of PGR5 did not correlate well with the additional ATP requirement, NDH was greatly expressed in mesophyll cells in the NAD-malic enzyme (ME) species, and in bundle-sheath cells in NADP-ME species, where there is a strong need for ATP in the respective cells. Our results indicate that CEF via NDH plays a central role in driving the CO(2)-concentrating mechanism in C(4) photosynthesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I.

Tobacco (Nicotiana tabacum var Petit Havana) ndhB-inactivated mutants (ndhB-) obtained by plastid transformation (E.M. Horvath, S.O. Peter, T. Joët, D. Rumeau, L. Cournac, G.V. Horvath, T.A. Kavanagh, C. Schäfer, G. Peltier, P. MedgyesyHorvath [2000] Plant Physiol 123: 1337-1350) were used to study the role of the NADH-dehydrogenase complex (NDH) during photosynthesis and particularly the invol...

متن کامل

A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice

Plants experience a highly variable light environment over the course of the day. To reveal the molecular mechanisms of their photosynthetic response to fluctuating light, we examined the role of two cyclic electron flows around photosystem I (CEF-PSI)--one depending on PROTON GRADIENT REGULATION 5 (PGR5) and one on NADH dehydrogenase-like complex (NDH)--in photosynthetic regulation under fluct...

متن کامل

Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light

Cyclic electron transport around photosystem I (PS I) was discovered more than a half-century ago and two pathways have been identified in angiosperms. Although substantial progress has been made in understanding the structure of the chloroplast NADH dehydrogenase-like (NDH) complex, which mediates one route of the cyclic electron transport pathways, its physiological function is not well under...

متن کامل

Combined increases in mitochondrial cooperation and oxygen photoreduction compensate for deficiency in cyclic electron flow in Chlamydomonas reinhardtii.

During oxygenic photosynthesis, metabolic reactions of CO2 fixation require more ATP than is supplied by the linear electron flow operating from photosystem II to photosystem I (PSI). Different mechanisms, such as cyclic electron flow (CEF) around PSI, have been proposed to participate in reequilibrating the ATP/NADPH balance. To determine the contribution of CEF to microalgal biomass productiv...

متن کامل

Dynamic reorganization of photosynthetic supercomplexes during environmental acclimation of photosynthesis

Plants and algae have acquired the ability to acclimate to ever-changing environments in order to survive. During photosynthesis, light energy is converted by several membrane protein supercomplexes into electrochemical energy, which is eventually used to assimilate CO2. The efficiency of photosynthesis is modulated by many environmental factors such as quality and quantity of light, temperatur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 46  شماره 

صفحات  -

تاریخ انتشار 2005